Process design and simulation of industrial-scale biodiesel purification using membrane technology

Author:

Kusumocahyo S P,Redulla R C,Fulbert K,Iskandar A A

Abstract

Abstract Biodiesel is commonly produced through a transesterification reaction of vegetable oil with alcohol in the presence of a catalyst to produce fatty acid methyl ester (FAME). The reaction also produces glycerol as a by-product that must be separated from the FAME to obtain a biodiesel product that meets international standards. The common method to remove glycerol from FAME is washing with water. However, it produces a vast amount of wastewater and consumes much energy. Membrane technology is a promising separation technique for removing glycerol from biodiesel on an industrial scale since the separation using membrane does not produce wastewater and the energy consumption is low. In this work, the application of membrane technology to separate biodiesel and glycerol was studied through a process design and simulation of an industrial scale biodiesel purification process with a production capacity of 723 kL/day. A multistage feed-and-bleed microfiltration membrane system was designed to purify biodiesel from glycerol, and the process simulation was carried out using computer programming. The result of the process simulation showed that purified biodiesel could be produced by using the multistage microfiltration membrane system. The minimum membrane area required for the separation process in each stage could be calculated using the computer program. It was found that the total membrane area decreased with the increasing number of stages. A reduction of the total membrane area of 37% was achieved using ten stages microfiltration system. The optimum number of the stages could be determined through a tradeoff analysis of the cost to minimize the capital cost of the multistage membrane system. For the case study in this work, a stage number of 4 was found as the optimum stage number of the microfiltration system. This result showed that the membrane technology has great potential to be applied for the industrial-scale biodiesel purification process.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3