Detecting Abnormal Interactions among Intranet Groups Based on Netflow Data

Author:

Yu Tao,Yue Ruiqi

Abstract

Abstract This paper proposes a method for detecting abnormal interactions among intranet groups based on netflow data. Firstly, the netflows of each group are aggregated, and two anomaly detection indicators are constructed, i.e., the group network traffic and the uncertainty of group network traffic distribution. Secondly, the time series of two anomaly detection indicators of each group are analyzed, and four prediction models are used for prediction. Finally, the best-performing model is selected as the prediction benchmark, and the difference between the predicted result and the real data is used to detect whether there is an interaction anomaly among groups. The experimental results show that the proposed method can effectively detect the abnormal interaction among groups in intranet.

Publisher

IOP Publishing

Subject

General Engineering

Reference16 articles.

1. Time series data feature extraction method suitable for classification in data mining [J];Zhu;Computer system application,2012

2. Diagnosing Network-Wide Traffic Anomalies[C];Crovella;ACM SIGCOM,2004

3. On non-scale invariant infinitely divisible cascades[J];Chainais;IEEE Trans. On Information Theory,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3