Ocean color as a proxy to predict sea surface salinity in the Banda Sea

Author:

Wouthuyzen Sam,Kusmanto E.,Fadli M.,Harsono G.,Salamena G.,Lekalette J.,Syahailatua A.

Abstract

Abstract Salinity is an important ocean parameter that greatly influences physical, chemical, and biological ocean properties and processes. Salinity combines with sea temperature and chlorophyll-a (Chl-a) that mostly sourced from remote sensing-based measurements can reveal ocean quality and supports fisheries. However, the satellite-derived Sea Surface Salinity (SSS) dataset (∼ 9 years) is not as temporally adequate as SST and Chl-a datasets (∼3 decades) and thus, preventing a comprehensively spatio-temporal analysis of this water quality aspect. Since (SSS) can be approximated using satellite-derived ocean color products having the similar temporal length of datasets to the available SST and Chl-a datasets, predicted SSS can be produced from these ocean color products to fill the gap of the existing SSS dataset. This study aims to estimate the SSS from ocean color products of Aqua-MODIS satellite with a spatial and temporal resolution of 4 km and 8-daily by developing an empirical model. The ocean color data used were remote sensing reflectance (Rrs) of blue, green and red wavelengths (412, 433, 469, 488, 531, 547, 555, 645, 667 and 678 nm). The absorption coefficients due to detritus material non-algae, Gelbstof and CDOM (ADG) at 443 nm and the absorption coefficient due to phytoplankton (APH) at 443 nm data were also used. The Banda Sea was chosen due to its large-scale upwelling system (∼300 km × 300 km) that providing an important ocean process related to fishery and the availability of in-situ salinity measurements (i.e. CTD casts from series of Research Vessel (R/V) Baruna Jaya III, VII and VIII cruises and Argo floats), which a part of these datasets will be used to validate predicted SSS. Results showed that of all ocean color parameters tested, ADG at 443 nm was strongly correlated with in-situ SSS through the polynomial order 5 regression equation with a high R2 of 0.94 and a low RMES value of 0.101 PSU. Although this empirical model has high accuracy, but based on RMSE analysis results from various locations within and outside the Banda Sea that influenced by the Pacific and the Indian ocean water masses indicates that this model actually good to predict in-situ SSS only for a narrow range SSS of 33.4-34.5 PSU. Nevertheless, this model has a limitation, it is still can be used for predicting and mapping the SSS for Banda Sea as well as for most of the Indonesian waters. The long-term meteorological SSS map (2003-2017) derived by this model together with the SST and Chl-a maps can show clearly the upwelling phenomena of the Banda Sea, which occurred during the southeast monsoon (June-July-August, JJA). This study proves that ocean color data from Aqua-MODIS satellite can be applied to estimate and to map the SSS for most of the Indonesian waters, but validations for this model is still needed

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Application in Water Quality Using Satellite Data;IOP Conference Series: Earth and Environmental Science;2021-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3