Numerical investigation of thermo hydraulic characteristics of monoblock module of EAST divertor

Author:

Cheng Desheng,Wang Weihua,shi Bo,Deng Haifei,Lu Wei,Wang Shenhao

Abstract

Abstract The Engineering design of divertor is one of the most important topics in nuclear fusion research. The primary problem in the design of divertor is to discharge the large amount of energy from high-energy plasma particles to ensure that the operation of fusion devices can be safe and stable for a long time. Based on the temperature of the divertor target plate measured in a discharge of the EAST experimental device, we carry out numerical simulations to examine the thermal and hydraulic performance of the Monoblock module. The ANSYS software is used for the simulations on the fluid-solid coupling phenomenon of a simplified model. The ANSYS parallel module and 30 CPUs are used for parallel computing, and periodic temperature pulses are loaded on the top surface of a tungsten divertor tile to investigate the thermo-hydraulic characteristics of Monoblock module. We find the pattern in which the distributions of temperature and heat flux change over time. The maximum temperature mainly depends on the peak heat flux of high-energy particles and the duration of pulses, The temperature of the interface of each component and of coolant outlet are all related to the density of discharge pulse and the duration of discharge, and the temperature of the interface of each component will reach to an equilibrium under the condition of stable discharge heat flow. The results provide support for the structural design of a stable EAST divertor.

Publisher

IOP Publishing

Subject

General Engineering

Reference10 articles.

1. Conceptual design of an evaporation-cooled liquid metal divertor for fusion power plants[J];Reimaim;Fusion Engineering and Design,2001

2. Liquid lithium divertor system for fusion reactor[J];Nagayama;Fusion Engineering and Design,2009

3. Design and optimization for the windowless target of China nuclear waste transmutation reactor[J];Cheng;Nuclear Engineering and Technology,2016

4. Design of divertor cooling structure for EAST superconducting tokamak[J];Han;plasma Physics & controlled Fusioon,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3