The effect of thermal hysteresis on the performance of a regenerative Ericsson refrigeration cycle with MnFe-based composite material

Author:

Li Yan,Lin Guoxing,Chen Jincan

Abstract

Abstract MnFe-based magnetocaloric materials exist a giant magnetocaloric effect so that they can be used as the working substance for room-temperature magnetic refrigeration. But there are two key problems to be solved before employing them as the working substance: one is that for single MnFe-based material, its giant magnetocaloric effect only arise in a small temperature range and the other is that these materials exist generally thermal hysteresis. For these reasons, a novel composite material based on MnFe-based materials is designed optimally, and a regenerative Ericsson refrigeration cycle using the composite material as the working substance is established. Furthermore, the performance of the refrigeration cycle with the composite is analyzed and evaluated. The influences of thermal hysteresis on main thermodynamic parameters of the refrigeration cycle are revealed by numerical calculation. The research results can provide some significant guidances for the parametric design and performance improvement of room-temperature magnetic refrigerators.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3