Cumulative energy and cost demand analysis in the synthesis of antistatic bionanocomposites compared with the synthesis of polypropylene

Author:

Sarfat M S,Setyaningsih D,Sudirman

Abstract

Abstract This study aims to find the cumulative energy demand (CED) and the cumulative cost demand (CCD) in the synthesis of antistatic bionanocomposites (AS BNC) compared with the synthesis of polypropylene (PP). The CED was identified using SimaPro 9.1.1 software, and the CCD was identified using the material and energy flow analysis (MEFA) method. The analysis results show that the CED required per kg mass of AS BNC pellets was 87.80 MJ, which is lower than the CED required per kg mass of PP pellets (91.19 MJ). This shows that the use of 94.38% of PP, 2% of M-DAG, 2.5% of CNC, 1% of MAPP, 0.02% of MO, 0.03% of AO 1010, and 0.07% of AO 168 in the synthesis of AS BNC can reduction the CED required, with a percentage of CED reduced was 3.71%. The CCD required per kg mass of AS BNC pellets was 68,314.54 IDR, which is higher than the CCD required per kg mass of PP pellets (25,577.27 IDR). The efficiency of energy and natural resources use are necessary to decrease the CED and CCD per kg mass of AS BNC pellets.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3