Classification Analysis of Industrial Buildings Using Orthophoto and NDSM Data with Deep Learning Approach (Case Study: Kali Rungkut Village, Surabaya)

Author:

Raihan Muhammad Anis,Rachmadi Reza Fuad,Bimanjaya Alfian,Handayani Hepi Hapsari

Abstract

Abstract Information of industrial estates is important because it may increase the economy level, industrial goods production, and export activities. In addition, information of industrial areas needs to be identified so that the area does not interfere with agricultural productivity, natural resources, and cultural heritage. To obtain this information, extraction and classification of building footprints using orthophoto data with a deep learning approach is carried out. However, this has the challenge that the condition of the building is highly diverse in both shape and size, so it requires additional data such as height data form (NDSM) to facilitate its identification. The Mask Region-based Convolutional Neural Network (Mask R-CNN) method used for extraction produces 88.49% precision accuracy; 66.82% completeness (recall); and 76.15% F1-score. The classification model performed with the Deep Neural Network (DNN) method, produced excellent accuracy with average values of precision, recall, and F1-score of 0.94; 0.90; and 0.92, respectively.

Publisher

IOP Publishing

Subject

General Medicine

Reference18 articles.

1. Surat Keputusan Menperin No. 19 M/SK/1986;Perindustrian,1986

2. 2D Semantic Labeling Penutup Lahan di Area Urban dengan Analisis Berbasis Objek Dari Foto Udara dan LiDAR;Juniati,2018

3. Peraturan Badan Informasi Geospasial Nomor 10 Tahun 2017 Tentang Analisis Biaya Keluaran Kegiatan Penyelenggaraan Informasi Geospasial;Badan Informasi Geospasial,2017

4. Training distributed deep recurrent neural networks with mixed precision on GPU clusters

5. Building type classification using spatial and landscape attributes derived from LiDAR remote sensing data;Lu;Landsc. Urban Plan.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3