Reliability of Runoff Hydrograph Model for Extreme Rainfall Events using HEC-RAS 2D Flow Hydrodynamics Rain-On-Grid

Author:

Ansori Mohamad Bagus,Lasminto Umboro,Gde Kartika Anak Agung

Abstract

Abstract Hydrological modeling is a valuable tool for analyzing water resources and predicting the impacts of extreme rainfall events, particularly for flood risk mitigation. Accurate results from hydrological models rely heavily on detailed input of watershed characteristics, including morphometric factors, land cover, and slope. In the face of the increasing frequency and severity of floods due to climate change, hydrological modeling has become an essential tool for disaster risk mitigation and management. HEC-RAS is a widely used software for river flow modeling and floodplain analysis. HEC-RAS 2D with the rain-on-grid meteorological model is a powerful tool for simulating flood events in complex river systems. The rain-on-grid method enables the simulation of spatially distributed rainfall events and their impact on runoff, which is crucial for modeling extreme runoff hydrographs. Previous studies have demonstrated the accuracy and effectiveness of HEC-RAS 2D with rain-on-grid in modeling extreme runoff hydrographs. This study aims to validate the reliability of HEC-RAS 2D hydrodynamics in simulating unsteady flow with meteorological data will be examined within a laboratory-scale physical model of the watershed. Additionally, the performance of HEC-RAS 2D will be evaluated in a observed watershed, specifically the Bangga watershed in Central Sulawesi to assess the performance of the HEC-RAS 2D Hydrodynamics model. The runoff hydrograph reliability model using HEC-RAS 2D rain-on-grid yielded close results when compared to a laboratory-scale physical model with a rainfall simulator and HEC-RAS 2D simulation using meteorological input data. The error in Time of Peak (Tp) and Peak Discharge (Qp) between the physical and numerical models was 7% and 3.5%, respectively. Additionally, in the HEC-RAS 2D simulation, a Manning roughness coefficient value of 0.04 closely matched the results of the physical model, while there was some variability when comparing HEC-RAS 2D results with measured data in Bangga watershed of Central Sulawesi. However, the numerical model exhibited relatively approaching result with the HEC-HMS SCS hydrograph model.

Publisher

IOP Publishing

Subject

General Medicine

Reference30 articles.

1. Uncertainty analyses of watershed time parameters;McCuen;Journal of Hydrologic Engineering,2009

2. Flood risk and climate change: global and regional perspectives;Kundzewicz;Hydrological Sciences Journal,2014

3. The TRMM Rainfall-Runoff Transformation Model Using GR4J as a Prediction of The Tugu Dam Reservoir Inflow;Ansori;International Journal of GEOMATE,2022

4. Hydrologic Responses to Climate Variability and Human Activities in Lake Ziway Basin;Musie;Ethiopia. Water,2020

5. Rainfall-runoff response, event-based runoff coefficients a nd hydrograph separation;Theresa;Hydrological Sciences Journal,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3