Identifying Potential Areas for Oil and Gas Well Location Planning Using Support Vector Machine Algorithm

Author:

Dwi Safira Rizka Amelia,Nurwatik Nurwatik,Hariyanto Teguh

Abstract

Abstract To fulfill national energy needs for the National Energy Grand Strategy (GSEN), it is necessary to increase the productivity of oil and gas exploration by involving technology that provides alternative solutions, cuts work time, and overcomes the risk of failure. This research aims to identify potential areas for planning new oil and gas well locations using a machine learning algorithm called Support Vector Machine (SVM). This research chooses four splitting ratios of 80:20, 75:25, 60:40, and 50:50 on training and testing data to produce four models and to identify the most robust model for Blora Regency. The algorithm involves fourteen conditioning parameters comprising altitude, slope, aspect, distance from the river network, land cover, distance from the road network, soil type, Normalized Difference Vegetation Index (NDVI), clay mineral index, iron oxide index, surface temperature, complete Bouguer anomaly (CBL), distance from the fault, and rock type. This research uses the confusion matrix and the ROC-AUC to evaluate all models and determine the best one. The result witnesses the best model is SVM 75:25 with an accuracy (Acc), sensitivity (Sen), specificity (Spe), and predictive value (PPV) of 0.8333; Matthew’s correlation coefficient and Cohen’s kappa of 0.6667; and area under the curve (AUC) of 0.9444. In addition, the conditioning parameter contributing the most significant influence on the best model is the slope equal to 100%.

Publisher

IOP Publishing

Subject

General Medicine

Reference53 articles.

1. GIS integration model for geothermal exploration and well siting;Noorollahi;Geothermics,2008

2. Analisis peta risiko pengeboran di wilayah Asset 5 PT Pertamina EP;Irawan;J. Manaj. dan Kewirausahaan,2015

3. Sistem Informasi Geografi untuk Optimasi Eksplorasi dan Pengembangan Wilayah Migas;Sunarjanto;Lembaran Publ. Miny. dan Gas Bumi,2014

4. Landslide Susceptibility Mapping Based on Random Forest and Boosted Regression Tree Models, and a Comparison of Their Performance;Park;Appl. Sci.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3