Inland Water Trophic State Identification using Remote Sensing data and Machine Learning Approach

Author:

Setiawan F,Jiang D,Hamzah R,Matsushita B

Abstract

Abstract Providing information on inland waters’ trophic state levels (oligotrophic, mesotrophic, eutrophic, and hypereutrophic) is considered more effective in communicating the lake’s conditions to the public and policymakers than water quality. It is highly demanding for a straightforward method to estimate inland waters’ trophic state. This study proposes a model for estimating the lake trophic state levels from remote sensing data. We used simulation data to overcome data limitations in building the classification model. The simulation data consists of one nanometer (nm) interval spectra, paired with calculated Secchi Disk Depth (SD in m) representing various water types. We convert the spectra into Landsat band configuration and classify SD into four trophic state levels. We compare four machine learning classification models, i.e., Classification and Regression Trees (CART), k-Nearest Neighbour (k-NN), Support Vector Machine (SVM), Random Forest (RF), and select the best model using the Kappa Index. We apply the selected model to satellite images and estimate trophic state levels of various lakes across time and space. Our result demonstrated that the developed model could robustly identify the lake trophic state levels. This rapid identification procedure could provide valuable spatial and temporal information of the lake’s conditions for the public and policymakers to support inland water sustainable management.

Publisher

IOP Publishing

Subject

General Engineering

Reference14 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3