Author:
Rossi A,Javadian A,Acosta I,Özdemir E,Nolte N,Saeidi N,Dwan A,Ren S,Vries L,Hebel D,Wurm J,Eversmann P
Abstract
Abstract
Office and retail interior fittings have a relatively short service life of 5-7 years. In this context, composite materials are often used, hindering possibilities of reuse or recycling. This research explores novel bio-composite materials and subsequently a construction method for CO2-neutral, circular interior fittings for office spaces. Based on the potential of fungal mycelium as a rapidly renewable, regenerative, affordable, low-carbon building material, bio-composite construction methods are explored in conjunction with timber-based additive manufacturing using continuous fibres. As mycelium has potentially excellent sound-absorbing properties but low load-bearing capacity, composite construction of timber veneer and mycelium allows to increase the structural capabilities of resulting components, while relying entirely on bio-based value chains. We describe the production process as well as the material development, including robotically aided processes for additive manufacturing of veneer reinforcement grids and compatibility studies of different mycelial species and substrates, and their bonding capabilities with veneer. We further present initial results on the mechanical characterization of the composite material, and its comparison to conventional mycelium composites. Minimal structural, acoustic, and functional requirements for different interior fitting elements are studied and compared to the characteristics of the proposed composite, highlighting the range of applications of the presented wood-mycelium composites.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献