Development of an advanced methodology for assessing the environmental impacts of refurbishments

Author:

Obrecht T P,Jordan S,Legat A,Saade M R M,Passer A

Abstract

Abstract The refurbishment of the building stock is one of the key tasks for reducing the future environmental emissions in building sector. The assessment of the environmental impacts (EI) of refurbishments with LCA methodology remains a challenge. In the current practice, the refurbishment is threated as the beginning of the new lifecycle and all the impacts associated with the previous life cycle are generally neglected. The exclusion of materials and components used prior to the refurbishment produces a data gap at the end-of-life since information about materials that remained in the building after the refurbishment are missing. Furthermore, no information about what impacts have already been considered in the past bears the risk that some of the impacts are double-counted. In order to overcome these problems, an advanced methodology for the assessment of the embodied impacts in the case of refurbishment was developed that combines two sub-methodologies that can also be used separately. The first sub-methodology is used for remodelling the input data in order to make them time corresponding. The second sub-methodology is used for the assessment of the EI in the residual value of building materials and components and is including the allocation of EI between the life cycle before and after the refurbishment. The combination of the two sub-methodologies enables a more realistic and accurate assessment of the environmental impacts. The methodology is illustrated on the case on the case of a façade refurbishment. Five different allocation approaches are investigated and the residual value is calculated after a selected time period before and after the refurbishment. For all the inputs time-corresponding data is modelled and used. The study showed that for the life cycle before the refurbishment the EI and the residual value are generally higher if time-corresponding data is used since the EI of the electricity mix are higher. It turned out that the use of different allocation approaches is favouring either the use of recycled or reused materials or the recycling of the materials at the end. The PEF and the cut-off approach with module D are both enhancing the circular economy. It can be assumed that they are likely to prevail in the future.

Publisher

IOP Publishing

Subject

General Engineering

Reference16 articles.

1. Life cycle assessment (LCA) of building refurbishment: A literature review;Vilches;Energy Build.,2017

2. Embodied GHG emissions of buildings – The hidden challenge for e ff ective climate change mitigation;Röck;Appl. Energy,2019

3. European Green Deal Call,2020

4. The Economic Effects of Achieving the 2030 EU Climate Targets in the Context of the Corona Crisis - An Austrian Perspective;Steininger,2021

5. Life cycle assessment of electricity generation: a review of the characteristics of existing literature;Barros;Int. J. Life Cycle Assess.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3