The Hazards of Electric Car Batteries and Their Recycling

Author:

Wan Taotianchen,Wang Yikai

Abstract

Abstract In recent years, under the double pressure of energy exhaustion and environmental deterioration, the development of electric vehicles has become the major development trend of the automotive industry in the future. This paper discusses the problem of abandoned batteries caused by the limited life of a large number of batteries with the prosperity of new energy vehicle industry. This paper lists and analyzes the different characteristics of batteries commonly used by three new energy vehicles in the market :(1) lead-acid batteries will not leak in the use process due to tight sealing, but their use cycle is very short. (2) The production of nickel metal hydride battery is relatively mature, its production cost is low, and compared with lithium electronic battery is safer. (3) Lithium-ion batteries are made of non-toxic materials, which makes them known as “green batteries”. However, they are expensive to make and have poor compatibility with other batteries. Because discarded batteries pose a threat to human health and environmental sustainability, lithium-ion batteries may overheat and fire when exposed to high temperatures or when penetrated, releasing carbon monoxide and hydrogen cyanide that can be very harmful to human health. In addition, waste batteries will also cause water pollution and inhibit the growth and reproduction of aquatic organisms and other potential dangers. Therefore, it is necessary to recycle it efficiently. This paper then introduces the advantages of three recycling methods: step utilization and recovery, ultrasonic recovery and sodium ion battery. These recycling methods can maximize the reuse efficiency of waste batteries. This paper expects to find a better way to recycle waste batteries to solve the potential problems of improper disposal of waste batteries and reduce the environmental hazards of waste batteries.

Publisher

IOP Publishing

Subject

General Engineering

Reference19 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3