Model development and simulation of vehicle suspension system with magneto-rheological damper

Author:

Vaishnav Sarthak,Paul Jerry,Deivanathan R

Abstract

Abstract A vehicle suspension system is designed to maintain directional control (road holding) during manoeuvring or braking while supporting the vehicle’s weight and provide stability (handling). The structure of a suspension system consists of parts connecting the axle to wheel assembly and the chassis of an automobile, thus supporting engine, transmission system and vehicle load. Suspension system components consist of dampening devices, springs, steering knuckles, ball joints and spindles or axles. It could be designed according to a passive, semi-active or active mode of working. For evaluation, this assembly could be modelled as a spring-mass-damper system. The semi-active suspension system has been modelled with a magneto-rheological damper following the Bingham plastic theory. In this paper, the performance of a passive and a semi-active suspension of a quarter car model are compared by MATLAB simulation. Thus, a better suspension system is found out by simulating with different road conditions.

Publisher

IOP Publishing

Subject

General Engineering

Reference23 articles.

1. Vehicle suspension system technology and design;Goodarzi;Synthesis Lectures on Advances in Automotive Technology,2017

2. Analysis of passive and semi active controlled suspension systems for ride comfort in an omnibus passing over a speed bump;Rao;International Journal of Research and Reviews in Applied Sciences,2010

3. Analysis of semi active suspension system with Bingham model subjected to random road excitation using MATLAB/Simulink;Hingane;IOSR Journal of Mechanical and Civil Engineering,2013

4. Modelling simulation and control of an active suspension system;Kuber;International Journal of Mechanical Engineering & Technology,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Variation of Mass Value for Spring Damper System in Suspension Using Python Simulation in Google Colab;International Journal of Scientific Research in Science and Technology;2023-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3