Author:
Tamil Selvan P,Abhiram K,Anu Raghava Ch,Naveen Sai V
Abstract
Abstract
COVID-19 is declared as a pandemic by WHO (world health organization) which has led to many deaths all over the world. This study deals with the fluid motion in the isolation rooms with 12 or more ACH (air changes per hour) and maintaining a minimum pressure difference of 2.5 Pascal that can help in reducing the transmission of the virus from affected people. ANSI/ASHRAE guidelines are considered for the analysis. These Isolation rooms help in eradicating the spread of the contaminated particles to the surroundings by creating a pressure less than the atmospheric pressure in in the room. CFD simulations are carried to study the fluid motion of the particles emitted by the patient inside the room. The Analysis is carried out with various human cough velocities of different particle diameters and we observed from the results that the time taken by the particles to reach the exhaust increases with increase in particle diameter, and the flow inside the room increases with increase in human cough velocity.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献