Self-Powered Supercapacitor for Low Power Wearable device Applications

Author:

Bharathi Sankar Ammaiyappan A.,Ramalingam Seyezhai

Abstract

Abstract Piezoelectric generators can be used strong vibrations convert to electrical power, it can be stored and utilized in low power devices such as radio frequency identification tags (RFIDs), wireless, global position system (GPS) and sensors. Since most low power devices are wireless, it is important that they have their own independent power. Traditionally, electrical energy comes from heavy lead acid and lithium ion batteries, which contain chemicals that are not environmental friendly. More importantly, lead acid and lithium ion batteries have an average lifespan of 500–1000 cycles, compared to carbon-based supercapacitors (10 lakhs cycle). With the introduction of a wide range of portable, wearable electronics devices and health monitoring equipment. Piezoelectric power harvesting equipment is one of the most applications of portable electronic power supply. Supercapacitors are promising electrochemical energy storage devices which possessing very high power density, rapid charge, and discharge rates with a long lifecycle. Supercapacitors hold high power density as compared to dielectric capacitors and hence supercapacitors are extensively utilized for powering several portable electronic devices. Supercapacitors explore a wide range of applications as they can deliver a high power within a very short period. In this paper describes various supercapacitor powered potential applications in various sectors like flexible, portable, wearable electronics, implantable healthcare and biomedical sensor, etc.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of supercapacitors: Materials, technology, challenges, and renewable energy applications;Journal of Energy Storage;2024-08

2. Monolithic supercapacitors prepared by roll-to-roll screen printing;2024 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS);2024-06-30

3. Wearable Supercapacitors;Sustainable Materials for Electrochemical Capacitors;2023-09-05

4. Potential impact of smart-hybrid supercapacitors in novel electronic devices and electric vehicles;Smart Supercapacitors;2023

5. Recent progress in stretchable and self-healable supercapacitors: active materials, mechanism, and device construction;Journal of Micromechanics and Microengineering;2022-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3