Raw Industrial Wastewater Treatment Using Fenton, Photo Fenton and Photo Catalytic: A Comparison Study

Author:

Martini Sri,Afroze Sharmeen,Roni Kiagus Ahmad

Abstract

Abstract This work implemented solar TiO2 photocatalysis, Fenton, and photo-Fenton separately for treating raw petroleum refinery wastewater (PRW) in terms of its COD and TOC removal. The effect of irradiation and reaction time along with initial pH on the degradation profiles was assessed and compared. The experimental work then revealed that maximum removal efficiency of COD and TOC by solar TiO2 photocatalysis was 48.2 and 53.3%, respectively while photo-Fenton reached 54.1 and 59.1%, respectively. Photo-assisted process was found significantly better than dark mechanism, especially for TiO2 catalysis. In addition, employing acidic condition in the range of 3 to 5 in both photocatalysis and photo-Fenton processes resulted in the obvious improvement of pollutant degradation. Eventually, the kinetic study indicated that the degradation of COD and TOC is suitable to pseudo-first-order pattern by reaching high R2 values.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3