AIM/End-use Model for Selecting of Low-Carbon Technology in Indonesia’s Iron and Steel Industry

Author:

Dewi R G,Zunita M,Sevie G N,Kurniawati F W

Abstract

Abstract As an intensive energy-consuming, iron and steel making industry has significantly contributed to the national GHG emissions as the energy consumption is supplied by fossil fuels with high carbon emissions. The industry also releases GHG emissions during production processes, in which the emissions are considered as IPPU (industrial process and product use) category. There are still rooms for improvements in this industry, particularly those related to the efficiency improvement of energy use as well as material use or processes that could lead to the GHG emission reductions. Therefore, the iron and steel industry important roles to achieve the target of Indonesia’s NDC commitment in reducing GHG emissions and also towards the direction of low-carbon development and future climate resilience. In this study, a quantitative evaluation was conducted to analyse the effectiveness of emissions mitigation on potential energy saving and carbon emission reduction using the bottom-up AIM/End-use energy model in 2010-2050. This tool was used to select an optimal technology in detail with minimum cost approach. Several energy models have been proposed previously to quantify carbon emissions. However, a separate analysis of emissions from energy usage and IPPU (Industrial Process and Product Use) has never been done. The energy model was built under the baseline scenario and the following relevant mitigation scenario options were investigated: (i) adjusted the production structure, by increasing material efficiency with the scrap use in steel production process BF-BOF (Blast furnace-Basic oxygen furnaces) route and scrap-EAF (Electric arc furnace) route (CM1 scenario), (ii) maximised energy efficiency, by promoting low-carbon technology and non-blast furnace technology (smelting reduction) that is unimplemented early in modelling years in Indonesia will be included in the energy model for future reference (CM2 scenario), (iii) carbon emissions reduction through substitution of fossil fuels to low emission fuels (CM3 scenario). The expected results from the AIM/End-use model of Indonesia’s steel industry is to provide optimal mitigation options in terms of emission reductions and costs.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3