Multi node sensors for water quality monitoring towards precision aquaculture

Author:

Komarudin M,Septama H D,Yulianti T,Yudamson A,Hendri J,Arafat M A D

Abstract

Abstract Shrimp culture is carried out by ponds in open areas, especially near coastal areas. The ponds water condition or water quality has a significant impact on the shrimp culture. There are also frequent problems among these shrimp ponds, such as crop failure caused by bad water quality. The water quality monitoring in shrimp ponds is often done manually by the farmer in periodical times. The water quality monitoring that is done manually tends to be impractical, requires high worker wages, and has a high human error rate. With the advances in the field of Information Technology, data may be retrieved through sensors and collected into a server. Then the data may be processed and visualized in order to support precision aquaculture using the Internet of Things (IoT). Precision Fish Farming (PFF) or precision aquaculture is a concept that applies control-engineering principles to aquaculture industries. The PPF concepts allow farmers to have the ability to monitor, control, and document biological processes in aquaculture farms. This research aims were to design and build a multi node sensor and master board to monitor water quality in real time using the prototyping method. The system consists of several sensors for monitoring temperature, pH, and salinity in shrimp ponds that are installed at each node. Nodes are actively sending data to the master board. This model is done to reduce the need for direct data access to the internet. The monitoring system is tested in PB Tunas Baru shrimps pond in order to check if the system may work properly. The sensor is set to retrieve pond water quality data every 5 minutes in a total 100 minute period. The result shows that the model works properly, and the means value of the total error rate for the salinity sensors, pH, and temperature sensors consecutively is 1.65%, 1.25%, and 0%. This information allows the farmers to maintain the water quality precisely in aim to produce high quality shrimp crops toward the precision aquaculture concepts.

Publisher

IOP Publishing

Subject

General Engineering

Reference15 articles.

1. Kebijakan Pengelolaan Sumber Daya Perikanan Laut Untuk Menunjang Ketahanan Pangan di Indonesia;Wuryandani;Ekon. dan Kebijak. Publik,2011

2. Studi Performa Udang Vaname (Litopenaeus vannamei) yang dipelihara dengan Sistem Semi Intensif pada Kondisi Air Tambak dengan Kelimpahan Plankton yang Berbeda pada Saat Penebaran;Pratama;E-Journal Rekayasa dan Teknol. Budid. Perair,2017

3. Precision fish farming: A new framework to improve production in aquaculture;Fore;Biosyst. Eng.,2018

4. Design of Pond Water Quality Monitoring System Based on Internet of Things and Pond Fish Market in Real-Time to Support the Industrial Revolution 4.0;Junaidi;IOP Conf Ser. Mater. Sci. Eng.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrated Low-Cost Intelligent Solution for Inland Aquaculture;2022 International Conference on Emerging Smart Computing and Informatics (ESCI);2022-03-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3