Atmospheric phase delay correction of PS-InSAR to Monitor Land Subsidence in Surabaya

Author:

Ulma Toifatul,Anjasmara Ira Mutiara,Hayati Noorlaila

Abstract

Abstract Atmospheric phase delay is one of the most significant errors limiting the accuracy of Interferometric Synthetic Aperture Radar (InSAR) results. In this research, we used the Generic Atmospheric Correction Online Service for InSAR (GACOS) data to correct the tropospheric delay modeling from the persistent scatterers’ InSAR monitoring. Eighty-one (81) Sentinel-1A images and tropospheric delay maps from GACOS monitored land subsidence in Surabaya city between 2017 and 2019. InSAR processing was carried out using the GMTSAR software, continued with StaMPS and TRAIN, which were used to correct the tropospheric delay of PSInSAR-derived deformation measurements. The results before and after the atmospheric phase delay correction using GACOS were confirmed and analyzed in the main subsidence area. The findings of the experiments reveal that the atmospheric phase affects the mean LOS velocity results to some extent. The average difference between PS-InSAR before and after tropospheric correction is 1.734 mm/year with a standard deviation of 0.550 mm/year. The significance test of the two variables, 95%, showed that the tropospheric correction with GACOS data could affect the PS-InSAR results. Furthermore, GACOS correction may increase the error at some points, which could be due to its turbulence data’s low accuracy.

Publisher

IOP Publishing

Subject

General Engineering

Reference19 articles.

1. Decorrelation in interferometric radar echoes;Zebker;IEEE Trans. Geosci. Remote Sensing,1992

2. Assessing the Use of GACOS Products for SBASInSAR Deformation Monitoring: A case in Southern California. MDPI;Wang;Sensors,2019

3. Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation;Burgmann;Annu. Rev. Earth Planet Sci.,2000

4. Time-series InSAR ground deformation monitoring:Atmospheric delay modeling and estimating;Li;Earth-Science Rev,2019

5. Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models;Li;Int. J. Remote Sens,2009

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3