Structural, particle size distribution, and electrochemical behavior of double perovskite oxide doped Ce0.8Sm0.2O1.9 for intermediate temperature solid oxide fuel cells

Author:

Subardi A,Fu Y P

Abstract

Abstract Double perovskite SmBa0.5Sr0.5Co2O5+δ(70%)+Ce0.8Sm0.2O1.9(30%) as SBSC70+SDC30 cathode was fabricated using solid-state reaction technique and investigated as cathode material for solid oxide fuel cells operating at intermediate temperature (IT-SOFC). This work aims to determine the effect of SDC electrolyte doping into double perovskite cathodes on SOFC performance. LS-POP carried out particle size distribution analysis, and the equipment operates on a light source (HE-Ne laser) basis. XRD was used to determine the structure of the cathode powder, and SEM was used to analyze the microstructure morphology. Symmetrical cells were tested using a potentiostat Voltalab PGZ 301. The distribution of particle size for the SBSC70+SDC30 cathode was in the range of 1.41-2.03 µm. The polarization resistance (Rp) value of SBSC70+SDC30 cathode decreases with increasing temperature from 1.22 cm2 at 600°C to 0.21 cm2 at 800°C. The SBSC70+SDC30 activation energy (Ea) for Rp was 117. 3 kJ mol−1. From the overall results, double perovskite SBSC70+SDC30 cathode has potential as a cathode of medium temperature SOFC cells.

Publisher

IOP Publishing

Subject

General Engineering

Reference21 articles.

1. Towards the commercialization of solid oxide fuel cells: Recent advances in materials integration strategies;Mendonça;Fuels,2021

2. Hydrocarbon compatible soft anode catalysts and their syntheses: A Review;Kumar;Sustain. Chem.,2021

3. Layered oxygen- deficient double perovskites as promising cathode materials for solid oxide fuel cells;Klyndyuk;Materials,2022

4. Progress and prospects of reversible, solid oxide fuel cell materials;Shen;iScience,2021

5. Overview on ceramic and nanostructured materials for solid oxide fuel cells (SOFCs) Working at Different Temperatures;Priya;Journal of Electrochemical Science and Technology,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3