Short-Term Subway Passenger Flow Prediction Based on GCN-BiLSTM

Author:

Ma Donglin,Guo Yating,Ma Sizhou

Abstract

Abstract Aiming at the problem that the accuracy of passenger flow prediction is not high, this paper presents a short-term passenger flow forecasting model based on Graph Convolutional Neural Network (GCN) and Bidirectional Long-term Memory Network (BiLSTM). Firstly, the historical traffic time series is divided into three time modes: recent period, daily period and weekly period; Secondly, we construct three models based on GCN and BiLSTM to capture the spatial and temporal dependence of the three patterns; Finally, the parameter matrix is used to fuse the output of the three time modes to obtain the final prediction result. By testing the data set of subway passenger flow in a city in January 2019, the experimental results show that the root mean square error of the model is reduced by 8.515% and the average absolute error is reduced by 4.239% compared with the single BiLSTM model, it has a high fitting degree with the real passenger flow value and has certain application value for the reasonable allocation of subway capacity.

Publisher

IOP Publishing

Subject

General Engineering

Reference11 articles.

1. Metro transfer passenger forecasting based on Kalman filter[J];Xiong;Journal of Beijing Jiaotong University,2013

2. Prediction of urban railway station’s entrance and exit passenger flow based on multiply ARIMA model[J];Cai;Journal of Beijing Jiaotong University,2014

3. Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification[J];Guo;Transportation Research Part C Emerging Technologies,2014

4. A novel wavelet-SVM short-time passenger flow prediction in Beijing subway system[J];Sun;Neurocomputing,2015

5. A Short-term Forecasting of Traffic Flow Parameters Based on Decision Tree Theory[J];Xue;Traffic information and safety,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3