Multi-Parameter Neural Network for Altimeter Tropical Cyclone Wind Speed Estimation

Author:

Sharoni S,Md Reba M N

Abstract

Abstract The ability of satellite altimeter to estimate wind speed in tropical cyclone condition has been investigated. In the extreme condition with higher spatio-temporal variation, the ocean-atmosphere interaction is very complex and makes the existing algorithm become an ill-posed solution. In such condition, the developed algorithm from single frequency backscatter and significant waves height were insufficient. Besides, wind speed estimates become saturated at high regimes and the reflected backscatter was contaminated by rain. Therefore, other simultaneously observed parameters are needed to comprehensively account for this condition and is expected to improve the accuracy of wind speed retrieval. Aside from altimeter instrument, the microwave radiometer onboard Jason-2 concurrently records the brightness temperature and the rain information. To accommodate related multiple parameters for wind speed derivation, the neural network approach is proposed. Its unique advantage is relationship among multi-parameters can be easily established without prior knowledge on their physical attributes. Therefore, this study intended to determine the multi-parameter neural network (MPNN) model in estimating altimeter wind speed during the tropical cyclone condition. The results proved that the MPNN technique has potential in reducing the root mean square error by 30% in comparison between tropical cyclone wind speed estimate by the existing algorithm.

Publisher

IOP Publishing

Subject

General Engineering

Reference18 articles.

1. The increasing intensity of the strongest tropical cyclones;Elsner;Nature,2008

2. Devastating storm surges of Typhoon Haiyan;Lagmay;International journal of disaster risk reduction,2015

3. Advances and challenges at the National Hurricane Center;Rappaport;Weather and Forecasting,2009

4. A two-parameter wind speed algorithm for Ku-band altimeters;Gourrion;Journal of Atmospheric and Oceanic technology,2002

5. A scatterometer geophysical model function for climate-quality winds: QuikSCAT Ku-2011;Ricciardulli;Journal of Atmospheric and Oceanic Technology,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Instantaneous Tropical Cyclone Wind Characterization from JASON-3 Satellite Altimeter;IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium;2022-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3