Study of the configuration of multi-source energy harvesting systems based on piezoelectric nanogenerator as a clean energy harvester

Author:

Saparullah ,Mufti N,Adinegoro P,Wisodo H

Abstract

Abstract This paper presents the connection configuration of a multi-source piezoelectric transducer to extract energy from ambient mechanical forces to power up electronic devices. The configurations are optimized by applying a full-bridge rectifier (FBR) as an interface circuit to complete alternating to direct current (AC-DC) transformation before powering up any electronic devices. The FBR is varied in Silicon (Si-FBR) and Schottky (So-FBR) diodes to compare which one is more efficient. Six pieces of 35 mm piezoelectric transducer, PT, are connected in parallel and series connection then pressed under 20 N periodic force. The study shows that the configuration types of the multi-source PT have different results in harvesting mechanical energy. Experimental results show the maximum power can be harvested from six PTs in series for one and six Si-FBRs are 440 and 500 µW, respectively and for So-FBR obtained 150 and 730 µW. In a parallel configuration, maximum power can be harvested from six PTs for one and six Si-FBRs are 440 and 1050 µW, respectively and for So-FBR obtained 780 and 902 µW.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3