Adsorption of H2S from Thermal Water Using Clinoptilolite

Author:

Akhalbedashvili Lali,Beruashvili Tsira,Jalagania Sophio,Janashvili Nona,Merabashvili Nino

Abstract

Abstract The goal was to study and develop the composite adsorbents to uptake H2S from thermal water on the base of natural zeolite clinoptilolite (CL) from deposit of Georgia and activated carbon (AC). Cation-modified forms of CL have been prepared by wet-milling method. The crystalline structure and content of prepared adsorbents have been studied by X-ray diffraction (XRD) technique, IR-and AAS methods. Adsorption experiments carried out varying the ratio zeolite: AC, composite: solution, duration of contact, granulation degree. The results obtained showed that modification of CL by ion-exchanging method with metal ions (Zn2+, Fe3+, Mn2, Cu2+) has improved the adsorption capacity. Adsorption equilibrium reached in seven-fifteen minutes, and adsorption activity grows in a row: DeCL < CL < CuDeCL < MnDeCL < FeDeCL < ZnDeCL < AC/CL. The sorption capacity ranged from 0.68 mg/g to 28.17 mg/g. pH of thermal water before sorption was 8.97 and in filtrates changed in very wide ranges – from 10.44 until 3.55 depending on type of modification. Presence of multivalent cations of metals in the zeolite confirmed to be an essential factor determined the adsorption activity in relation to H2S, adsorption occurs via both physical sorption and chemisorption. Most active was composite AC/CL with ratio AC:CL, equal 3:2. The difference for H2S between decationated and cation-exchanged forms of CL may be explained by the change of surface potential. Polarity of zeolites depends on Si/Al ratio, which by-turn depends on conditions of acid treatment.

Publisher

IOP Publishing

Subject

General Engineering

Reference14 articles.

1. Removal of Hydrogen Sulphide from Water;Edwards;American Journal of Environmental Sciences,2011

2. Preparation, characterization and H2S adsorptive removal of ion-exchanged zeolites;Long;X. ASEAN Engineering Journal Part B,2016

3. Hydrogen Sulfide Capture: rom Absorption in Polar Liquids to Oxide, Zeolite, and Metal-Organic Framework Adsorbents and Membranes;Shah Mansi;Chem. Rev.,2017

4. Hydrogen sulfide removal from geothermal fluids by Fe(III)-based additives;Regenspurg;Geotherm Energy,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3