Thermo-hydraulic Analysis of Fluid Flowing Through Circular Pipe with Wire Mesh Inserts having Varying Mesh Porosity

Author:

Shrirao Pankaj,Jagtap Hanumant,Magade Pramod,Gadhave Pitambar,Kamble Dnyaneshwar

Abstract

Abstract The experimental investigation was made to analysis the rate of heat transfer of fluid flowing through a heat exchanger with varying wire-mesh porosity inserts. The Nusselt number (Nu), friction factor (f), and overall heat transfer rate (Q) were evaluated using experiments. Three different wire mesh inserts of square, hexagonal and diamond porosity were examined. The SS 316 stainless wire mesh with a porosity of 9 pores per inch (PPI) were inserted normal to the flow field with a pitch distance of 5 cm for each shape of wire mesh. The experiments were conducted on test rig with air as a working fluid for turbulent flow regime having Reynolds number ranging from 6,000 to 16,000. Experiments were performed on computerized test rig with heated air flowed in one direction through inner pipe and counter flow cold water flowing through the outer concentric pipe. The circular inner pipe of 40 cm long having 4 cm inner diameter (Di), and 3 mm thick was used for experimentation. The experimental results showed that Nusselt number (Nu) increases with decrease in friction factor (f) with increase in Reynolds number (Re). Also, it is observed that the hexagonal porosity shape of wire mesh insert provides higher material contact and gain more energy absorption from hot air resulted in improvement in heat transfer coefficient as compared to diagonal and square porosity shapes of wire mesh inserts, under similar operating conditions. The friction factor and pressure drop for square porosity shape of wire mesh insert is higher as compared to hexagonal and diagonal porosity shapes of wire mesh inserts respectively. This is due to the fact that square porosity wire mesh provides more obstruction in the flow field compared with hexagonal and diagonal porosity shapes of wire mesh inserts. The hexagonal porosity shape of wire mesh insert provides better option for heat exchange applications.

Publisher

IOP Publishing

Reference8 articles.

1. Experimental investigation of the potential of metallic porous inserts in enhancing forced convection heat transfer;Pavel Bogdan;Int. J. Heat Mass Transfer,2004

2. Forced convection enhancement of air flowing inside circular pipe with varying the pitch (P) of wire-mesh porous media

3. Experimental investigations in a circular tube to enhance turbulent heat transfer using mesh inserts;Sarada Naga;ARPN J. Eng. Appl. Sci.,2009

4. Experimental investigation of convective heat transfer in a vertical channel with brass wire mesh blocks;Kurian;Int. J. Therm. Sci.,2016

5. Experimental Investigation of Forced Convective Heat Transfer in Circular Pipe with Wire Mesh Porous Media;Rapeepong - Peamsuwan;Journal of Physics Conference Series,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3