Fillers Influence on Hot-Mix Asphalt Mixture Design and Performance Assessment

Author:

Nanjegowda Vinay Hosahally,Rathankumar M N,Anirudh N

Abstract

Abstract Filler’s presence in hot-mix asphalt (HMA) is even though minimal but they do affect its durability characteristics. Many natural and waste materials in the form of fillers have been studied for their effectiveness on HMA mix design and performance characteristics. However, in practice, stone dust (SD) is the preferred filler due to its abundance, ease of availability, and cost-effectiveness. Thus, the major objective of this study was to investigate the effect of locally available materials: stone dust (SD)- natural, hydrated lime (HL) – processed, rice-husk ash (RHA) and fly-ash (FHA)-waste materials on HMA properties based on the factors such as availability, field utilization, cost, and sustainability, while at the same time identify the anomalies of those selected fillers on HMA mix if any. A viscosity grade (VG-30) binder was selected and checked for its fundamental consistency characteristics set forth in Indian standards. In this study, aggregate gradation structure specified as bituminous concrete grading 1 (BC1) in India was designed for the preparation and evaluation of four HMA mixes: (a) BC1 with SD (BC1-SD), (b) BC1 with RHA (BC1-RHA), (c) BC1 with FA (BC1-FA), and d) BC1 with HL (BC1-HL). Fillers: RHA, FA, and HL were studied for their physico-chemical properties. The most recommended filler dosage of 4% by weight of mix was selected and kept uniform for the various BC1 mixes. Marshall method of mix design was performed to identify the optimum asphalt content (OAC) of four different BC1 mixes. The test results of methylene blue value (MBV), german filler value (GFV), and fineness modulus (FM) indicated that RHA includes more micron-to-nano sized particles than the other two fillers (HL and FA). The scanning electron microscope coupled with energy dispersive X-ray results showed that the RHA and FA exhibited similar chemical composition, while HL was identified to be a calcium-based compound. The BC1-RHA mix resulted in non-cohesive mix for the binder content ranging from 4.5 to 6.5%. Additionally, for the binder contents in the range of 7 to 9% the BC1-RHA compacted samples failed to yield air voids of 4% required to arrive at the OAC. The BC1- FA mix showed the highest Marshall stability (26.97 KN) followed by BC1-HL (23.97 kN), and BC1-SD (17.9 kN). Also, retained stability test results of all the three different mixes were in close proximity to each other indicative of the affinity of the fillers to asphalt. The resistance to moisture susceptibility results indicated that HL is the better anti-stripping element followed by FA, and SD. Among the three different filler-based BC1 mixes, BC1-HL mix was adjudged as an effective moisture resistant mix followed by BC1-FA, and BC1-SD. However, a single filler that not only tends to improve the various performance parameters of the mix but be available in abundance and cost-effective is yet to be explored.

Publisher

IOP Publishing

Subject

General Engineering

Reference50 articles.

1. Use of cement bypass dust as filler in asphalt concrete mixtures;Taha;J. Mater. Civ. Eng.,2002

2. Performance characteristics of bituminous concrete with industrial wastes as filler;Chandra,2013

3. Application of coal waste powder as filler in hot mix asphalt;Modarres;Con. Build. Mat.,2014

4. Effects of fillers on properties of asphalt-concrete mixture;Zulkati;J. Transport. Eng.,2012

5. Utilization of fine solid waste in asphalt mortar;Zhang;J. Mater. Civ. Eng.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3