Comparative analysis of machine learning techniques for so2 prediction modelling

Author:

Shaziayani W N,Noor N M,Azan S,Ul-Saufie A Z

Abstract

Abstract Sulphur dioxide (SO2) is produced both naturally and by human activity. The primary natural resource is derived from volcanoes. The burning of fossil fuels is the primary anthropogenic source (especially coal and diesel). Therefore, a reliable and accurate predicting method is essential for an early warning system for SO2 atmospheric concentration. There are still limited studies in Malaysia that use machine learning methods to predict SO2 concentrations. With the aid of machine learning, this study seeks to develop and predict future SO2 concentrations for the next day using the maximum daily data from Klang, Selangor. RapidMiner Studio is the data mining tool used for this research work. Based on the results, it showed that the SVM model was the best guide to be used compared with the other five models (GLM, DL, DT, GBT, and RF). The performance indicators showed that the SVM model was adequate for the next day’s prediction (R2 = 0.77, SE = 8.26, REL = 18.69%, AE = 1.46, and RMSE = 2.82). The developed model in this research can be used by Malaysian authorities as a public health protection measure to give Malaysians an early warning about the problem of air pollution. The goal of predictive modelling is to make a reasonable prediction of the variable of interest, and frequently, to determine how much the independent variable contributed to the dependent variable. The results also showed that the previous SO2 concentrations were one of the most influential parameters used to predict the future SO2 concentrations.

Publisher

IOP Publishing

Subject

General Medicine

Reference19 articles.

1. Human exposure to NO2 in school and office indoor environments;Salonen;Environment International,2019

2. A cooperative reduction model for regional air pollution control in China that considers adverse health effects and pollutant reduction costs;Xie;Science of The Total Environment,2016

3. Air quality in Malaysia: Impacts, management issues and future challenges;Awang;Respirology,2001

4. Trend and Status of SO2 Pollution as a Corrosive Agent at Four Different Monitoring Stations in the Klang Valley, Malaysia;Binyehemd;International Journal of Advanced Scientific and Technical Research,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3