Effects of Reverse Fault Dislocation Application Method for Tunnelling Through Active Faults

Author:

Huang Rui,Li Liqun,Chen Zhiyi

Abstract

Abstract Active faults seriously threaten the structural integrity of mountain tunnels in seismic zones, and reverse faults are the most hazardous. A tunnel project in the western region was used as a reference to analyze the damage mechanism of tunnels under different modes of reverse fault displacement. The ABAQUS finite element analysis software was employed for the numerical simulation, and a quasi-static method was adopted to analyze the displacement and stress response patterns of the tunnel structure traversing the fault under three typical modes of reverse fault displacement. This led to deriving the tunnel structure’s longitudinal damage modes and impact zones based on reverse fault displacement. The study revealed that the damage modes of the tunnel under different fault displacement modes varied, which was reflected in the different degrees of shear and compression. Regardless of the fault displacement mode, the tunnel structure located within the fault fracture zone was severely damaged, with the most severe damage occurring at the interface between the fixed plate and the fault displacement section. Therefore, in the design, special attention should be paid to the displacement resistance performance of the dangerous sections of the tunnel. The research results provide significant reference and guidance for similar projects.

Publisher

IOP Publishing

Reference18 articles.

1. Deformation and failure of a tunnel subjected to the coupling effect of a quasi-static faulting and seismic impact;Cui;Rock. Soil. Mech.,2022

2. Study on the deformation and internal force of the tunnel under the displacement pattern of the active fault zone;Zhou;J. Disaster. Prev. Mitigation. Eng.,2021

3. Structural Stress Characteristics and Joint Deformation of Shield Tunnels Crossing Active Faults

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3