Evaluation of large axial strain of granular sand in post-liquefaction stage using DEM simulation

Author:

Ma Junnan,Ni Xueqian,Zhang Feng

Abstract

Abstract Field investigations in recent studies have revealed that significant damage to foundations often occurs in the post-liquefaction stage, during which sand undergoes substantial deformation. As a result, numerous researchers have dedicated considerable effort to studying the evolution of the axial strain at this stage. However, the accurate measurement of the exact value of this strain is challenging mainly owing to the limitations of the triaxial apparatus. In this study, the numerical method of discrete element method (DEM) is used to simulate undrained cyclic triaxial loading tests according to a large number of loading cycles. The mechanical behaviour of granular sand under different cell pressures was reproduced using the DEM method, wherein the liquefaction resistance increased with the cell pressure. The post-liquefaction axial strain exhibited a similar pattern of variation among the calculated cases at different cell pressures. The value of the double amplitude of the axial strain stabilised at a maximum value after a certain loading cycle. The microscopic characteristics derived from the DEM calculations, including the contact number and force chain network, were analysed to provide reasonable explanations. The sand fabric was re-established after a large number of loading cycles and controlled by cyclic loading, which helped stabilise the accumulated axial strain.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3