Research on removal of NOX, SO2 and PM from flue gas of coal-fired boilers and engineering application

Author:

Tang Zhipeng,Zhou Rulu,Cui DongFeng,Yang Jianchao,Ma Sai,Wei Ran

Abstract

Abstract Removal of NOX and SO2 from flue gas by Ozone (O3) oxidation and NaOH absorption was carried out in practical engineering. The effects of the liquid to gas ratio (L/G), the molar ratio of O3 dosage and initial content of NOX (O3/NOX), pH and NaOH concentrations on the removal efficiencies of NOx and SO2 were investigated. In addition, the influences of O3/NOX and voltage on the removal of PM were analyzed. The results show that the NOX removal efficiency increases with the increasing of O3/NOX (0∼2.0), solution pH (4∼7) and L/G (2∼8), while is slightly affected by NaOH concentration (0.05∼1%). The SO2 removal efficiency increases with the increase of L/G from 2 to 8 L/Nm3, but is hardly changed by O3/NOX (0∼2.0), NaOH concentration (0.05∼1%) and solution pH (4∼10). It was found that the outlet concentration of PM (CPM) decreased with the rise of voltage ranging from 0 to 40 kV, however, slightly increases with the increment of O3/NOX at a range from 1.6 to 2.0. The optimal operating conditions can be established when taking running costs and rigorous ultra-low emission standards into consideration. Under the optimal conditions, the removal efficiencies of NOX and SO2 reached more than 75% and 98% respectively, and CPM could be also controlled within 5 mg/Nm3.

Publisher

IOP Publishing

Subject

General Engineering

Reference19 articles.

1. A critical review on the method of simultaneous removal of multi-air-pollutant in flue gas;Wang;Chem. Eng. J,2020

2. Coal combustion and its pollution control in China;You;Energy,2010

3. Sulfur removal at high temperature during coal combustion in furnaces: a review;Cheng;Prog. Energ. Combust,2003

4. Oxidation and reduction of mercury by SCR deNOx catalysts under flue gas conditions in coal fired power plants;Stolle;Appl. Catal. B: Environ,2014

5. Highly active Sb-V-CeO2/TiO2 catalyst under low sulfur for NH3-SCR at low temperature;Jeong;Catal. Lett,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3