Evaluation of chloride diffusion in concrete using PSO-BP and BP neural network

Author:

Yao Ling,Ren Lixia,Gong Guoli

Abstract

Abstract Chloride diffusion is the major causes of deterioration of concrete structures in engineering. Because chloride diffusion experiments are time consuming, it is desired to develop a model to predict the chloride diffusion in concrete. In this paper, the optimizing of particle swarm algorithm (PSO) on BP neural network is adopted to predict the chloride penetration in concrete. For purpose of building these models, training and testing pattern is gathered from the technical literature. PSO-BP neural network can improve BP disadvantage. PSO-BP neural network is better precision than BP neural network through the results of PSO-BP, BP and experiments. The research results demonstrate that PSO-BP neural network is an effective tool in the prediction of chloride diffusion.

Publisher

IOP Publishing

Subject

General Engineering

Reference7 articles.

1. Prediction of concrete properties using multiple linear regression and artificial neural network;Charhate;Journal of Soft Computing in Civil Engineering,2018

2. An Artificial Neural Network Model to Predict the thermal properties of concrete using different neurons and activation functions;Fidan;Advances in Materials Science & Engineering,2019

3. Prediction of properties of concrete cured under hot weather using multivariate regression and ANN Models;Nasir;Arabian Journal for Science and Engineering,2020

4. Neural network analysis of chloride diffusion in concrete;Peng;Journal of Materials in Civil Engineering,2002

5. Evaluation of chloride penetration in high performance concrete using neural network algorithm and micro pore structure;Song;Cement & Concrete Research,2009

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3