Strengthen resilience to rivers flooding by the drag reduction technique

Author:

Bouchenafa Walid,Dang-Vu Trong,Dang-Vu Huyen Xuan

Abstract

Abstract Urban agglomerations face the risk of overflowing rivers due to intense urbanization in flood-prone areas and the climate change effects. Despite the important protective measures deployed to reduce the fluvial flooding risk, additional efforts are still needed. This work aims to propose a new complementary non-structural protection measure, used to reduce the river flooding risk. The study is part of the NABRAPOL (NEBRASKA POLYMER) project, which aims to improve knowledge of the drag reduction effect by adding polymers in open-channel flows. The addition of polymers, even in limited concentrations, allows high friction to decrease with the typical Manning coefficient reduced up to 45%. An application case on a real watercourse is presented in this article. Two measurement campaigns are carried out on a river along 30 km. Experimental devices are deployed, and non-intrusive hydraulic measuring instruments are installed at the study field. Surface velocities are evaluated by the Large-Scale Particle Image Velocimetry (LSPIV) technique, and water depth is measured using ultrasonic radar sensors over the river. Measurement results show that the addition of 20 ppm of polymers in the flows results in a marked drag reduction by decreasing the water depth to 18% of its initial depth. The drag reduction technique by addition of small concentrations of polymers can be considered as a new and effective method to reinforce the measures already deployed in the flood risk management strategy since it allows the water depth to be decreased thus avoid overflowing rivers in the extreme flooding event.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3