Lalombi Tropical Peat Soil Improvement Using Iron Oxide admixture and Cement

Author:

Nurdin Sukiman,Arifin B.,Fadillah I,Syahriar M R

Abstract

Abstract Peat soil has a relatively high water content of up to 400%. With a high moisture content, peat soil can hinder construction work. For this reason, in construction planning, an investigation must be carried out on the characteristics and strength of the soil, especially the properties of the soil that affect the bearing capacity of the soil to withstand the load of the construction on it. This study aimed to determine the characteristics and changes in the bearing capacity of peat soil after mixing with cement and iron oxide admixture. The variation of mixing iron oxide is 0%, 4%, 8%, and 16%, while for variation of cement mixture is 5%. This research was conducted on the soil, including testing physical and mechanical properties. Engineering properties tests include direct shear and consolidation tests. This research conducted the elemental chemical content in peat soil and SEM (Scanning Electron Microscope) test. Based on the classification of peat soil at this location with an ash content-value of 29.41%, it can be classified as High Ash Peat (peat with ash content > 25%). In the direct shear test, the cohesion value and the shear angle continued to increase as the percentage of the iron oxide mixture increased to 16%, where the shear angle changed from 7.60º to 45°. In the consolidation test, the original soil Cc value of 0.00820 decreased with the addition of iron oxide to 16%; the Cc value decreased to 0.00277. The decrease in Cc indicates that the soil becomes easily compacted, and The value of the Coefficient of Consolidation (Cv) on peat soil was 0.00535 cm²/sec. The most significant increase in the original soil with a mixture of 16% iron oxide was 0.01463 cm²/sec. The Chemical results have been given a mixture of 16% iron oxide and 5% cement, the change of C (Carbon), Fe (Ferrum) and Ca (Calcium). The value of O (Oxygen) in peat soil was 48.05% and then decreased to 43.67%, this indicates that the pores in the peat soil are reduced, and when the pores are reduced, the peat soil becomes denser. The value of Si (Silica) also decreased from 30.01% to 21.21%. This occurred because silica reacted with lime. After all, silica is an adhesive that binds lime, making the granules denser. Peat soil’s Fe (Ferrum) value was 3.12%, then increased to 16.72%. This also helped the soil to become stronger because of the higher specific gravity of iron. Peat soil’s Al (aluminium) value was 12.15% after being given a mixture of iron oxide and cement increased to 12.16%.

Publisher

IOP Publishing

Subject

General Engineering

Reference10 articles.

1. Stabilization of peat soil using locally admixture;Abdel-Salam;HBRC J.,2018

2. Behavior of Fibrous Peat Soil Stabilized with Rice Husk Ash (RHA) and Lime;Yulianto;Proc. 8th Int. Symp. Lowl. Technol. Sept.,2012

3. Geotechnical properties of peat soil stabilised with shredded waste tyre chips in combination with gypsum, lime or cement;Saberian;Mires Peat,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3