The application of Refuse Derived Fuel (FDR) from commercial solid wastes to reduce CO2 emissions in the cement industry: a preliminary study

Author:

Kristanto G A,Rachmansyah E

Abstract

Abstract One of the issues faced by several cities in Indonesia is the management of their increasing generation of solid wastes. One of the largest waste generators include the commercial area, such as malls, restaurants, office buildings, motels, and others, which need to manage their wastes via more sustainable routes such as the application of these wastes as refuse derived fuel to mitigate the climate change causing by fossil fuel. This study aims to analyse the potential use of wastes generated from commercial areas such as refuse-derived fuel (RDF) in the cement industry for reducing CO2 emissions. Five variants of RDFs were developed on the basis of commercial solid waste compositions. Results revealed that RDF variation 3 comprising 20% paper and 80% plastics exhibits the highest energy of 6272 kcal/kg. As preliminary study, cement industry Y is investigated as an example. During the simulation of the clinker production, RDF variation 3 is combined with petroleum coke, coal, fuel oil, or natural gas. Compared to other fuels, the combination of petroleum coke and RDF variation 3 exhibits the best CO2 reduction of 2, 155.3 106 Kt CO2/year, with the total annual clinker production of 12.64 million tons. These findings should aid policy and decision makers of waste management service provision and industry to design financially viable management systems based on resource recovery options.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3