Preliminary Results of Automatic P-Wave Regional Earthquake Arrival Time Picking Using Machine Learning with STA/LTA As the Input Parameters

Author:

Lumban Gaol Y H,Lobo R K,Angkasa S S,Abdullah A,Madrinovella I,Widyanti S,Priyono A,Suhardja S K,Nugraha A D,Zulfakriza Z,Widiyantoro S,Hakim M Luqman,Palgunadi K H

Abstract

Abstract The Short Term Averaging/Long Term Averaging (STA/LTA) has been widely used to detect earthquake arrival time. The method simply calculates the ratio of moving average of the waveform amplitude at short and long-time windows. However, although STA/LTA signals can distinguish between real events and noise, we still recognize some lack of accuracies in first P wave arrival pickings. In this study, we attempt to implement one machine learning method popularly, Artificial Neural Network (ANN) that employ input, hidden and output layer similar as human brain works. Note that in this study, we also try to add input parameters with another derivative signal attributes such as Recursive STA/LTA and Carl STA/LTA. The processing step started by collecting event waveforms from the Agency of Meteorology, Climatology and Geophysics. We chose regional events with moment magnitude higher than 3 in the Maluku region Indonesia. Next, we apply all STA/LTA attributes to the input waveforms. We also tested our STA/LTA with synthetic data and additional noise. Further step, we manually picked the arrival of P wave events and used this as the output for ANN. In total, we used 100 events for arrival data training in P wave phases. In the validation process, an accuracy of more than 0.98 can be obtained after 200 iterations. Final outputs showed, that in average, the difference between manual picking and automatic picking from ANN is 0.45 s. We are able to increase the accuracy by band pass filter (0.1 – 3 Hz) all signal and improve the mean into 0.15s difference between manual picking and ANN picks.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on a method for localizing high-density polyethylene membrane leakage based on the wave velocity inversion model;International Journal of Environmental Science and Technology;2023-06-19

2. Classification of Earthquake Vibrations Using the ANN (Artificial Neural Network) Algorithm;2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT);2022-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3