A comparison between lumped and distributed hydrological models for daily rainfall-runoff simulation

Author:

Vilaseca F,Narbondo S,Chreties C,Castro A,Gorgoglione A

Abstract

Abstract In Uruguay, the Santa Lucía Chico watershed has been studied in several hydrologic/hydraulic works due to its economic and social importance. However, few studies have been focused on water balance computation in this watershed. In this work, two daily rainfall-runoff models, a distributed (SWAT) and a lumped one (GR4J), were implemented at two subbasins of the Santa Lucía Chico watershed, with the aim of providing a thorough comparison for simulating daily hydrographs and identify possible scenarios in which each approach is more suitable than the other. Results showed that a distributed and complex model like SWAT performs better in watersheds characterized by anthropic interventions such as dams, which can be explicitly represented. On the other hand, for watersheds with no significant reservoirs, the use of a complex model may not be justified due to the higher effort required in modeling design, implementation, and computational cost, which is not reflected in a significant improvement of model performance.

Publisher

IOP Publishing

Subject

General Engineering

Reference14 articles.

1. Assessing temporal and spatial patterns of surface-water quality with a multivariate approach: A case study in Uruguay;Gorgoglione;IOP Conf. Series: Earth and Env. Sci.,2020

2. Evolución de la eutrofización en el Río Santa Lucía: Influencia de la intensificación productiva y perspectivas;Aubriot;Innotec,20

3. Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach;Rodríguez;Sustainability,2021

4. Enhancing physical similarity approach to predict runoff in ungauged watersheds in sub-tropical regions;Narbondo;Water,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3