Author:
Pianella A,Aye L,Chen Z,Williams N S G
Abstract
Abstract
Three experimental green roofs in Melbourne with depth of 100, 150 and 300 mm have been assessed to quantify their thermal performance. To evaluate the benefit of substrate depth, temperature was recorded every 50 mm along a vertical profile. Green roofs consisted of scoria substrate and a mix of three species of plants: Lomandra longifolia, Dianella admixta and Stypandra glauca. Statistical analyses applying the hierarchical partitioning technique showed that solar radiation is the main driver affecting the green roof surface temperature, air temperature has strong correlations with the variations of the temperatures recorded below the surface, while moisture content has the least influence. Temperature profiles of the green roof show that the first 50 mm do reduce the heat flowing through the green roof substrate regardless the total green roof substrate depth. Differences in thermal performance arise at deeper points, where thicker green roofs are able to delay the change of substrate temperatures. Similar effects were found for the heat fluxes measured at the interface between the green roof and building roof. These results confirmed that green roofs may be used as a sustainable passive technology to reduce building energy consumptions for South-East Australia climate.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献