Ecological and geochemical impact of an underground colliery waste discharge to a river

Author:

Morrison K G,Reynolds J K,Belmer N,Wright I A

Abstract

Abstract This study investigated the impact of mine wastewater disposal to a nearby river (the Bargo River). Mean electrical conductivity (EC) increased in surface waters below the mine discharge, rising more than six times from (219.5 μS/cm) upstream to 1551 μS/cm below the waste inflow. River pH increased from 7.12 (upstream) to 8.67 (downstream). The mine discharge strongly modified the ionic composition of the river. The mean concentration of several metals in the river were increased due to the mine wastewater. Nickel increased from 1.0 μg/L (upstream) to 32 μg/L (downstream). Zinc increased from 3.5 μg/L (upstream) to 23.5 μg/L (downstream). Our study also assessed the biological uptake of pollutants by growing weeping willow (Salix babylonica) cuttings in mine wastewater and contrasting to ‘control’ cuttings grown in river water from upstream of the mine. After growing in the laboratory for several weeks, the cuttings accumulated metals, dominated by barium, strontium and lithium. Results from the study constituted one of the most detailed geochemical and ecological studies investigating the impact of the coal mine waste discharge to an Australian river. Recommendations are suggested for improved regulation of the mine discharge to reduce its wastewater environmental impact.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3