Author:
Wu Pei-Yu,Mangold Mikael,Sandels Claes,Johansson Tim,Mjörnell Kristina
Abstract
Abstract
The presence of hazardous materials inhibits material circularity. The existing residential buildings are exposed to the risk of the unforeseen presence of asbestos-containing materials during the demolition or renovation process. Estimating the potential occurrence of contaminated building components can therefore facilitate semi-selective demolition and decontamination planning. The study aims to investigate the prediction possibility of seven frequently detected asbestos-containing materials by using artificial neural networks based on a hazardous material dataset from pre-demolition audit inventories and national building registers. Through iterative model evaluation and careful hyperparameter tuning, the prediction performance for each asbestos-containing material was benchmarked. A high level of accuracy was obtained for asbestos pipe insulation and ventilation channel, yet barely any patterns were found for asbestos floor mats. Artificial neural networks show potential for classifying specific asbestos components and can enhance the knowledge of their detection patterns. However, more quality data are needed to bring the models into practice for risk assessment for not yet inventoried residential buildings. The proposed screening approach for in situ asbestos-containing materials has high applicability for the quality assurance of recycled materials in circular value chains.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献