DEM analysis on the triaxial behaviour of mudstone considering water disintegration

Author:

Cao Zhensheng,Jia Tong,Zhang Shaoqiang,Ouyang Xun,Jiang Chuanbin,Huang Xin

Abstract

Abstract Mudstone is a typical type of soft rocks. It is stable and has high strength in its natural state. However, in presence of water the constituent minerals dissolve and the inter-grain bonds are weakened, which thereby greatly reduces the strength of mudstone. As one of the most prevailing geological formations in the southwestern China, understanding the mechanical behaviour of mudstone at different degrees of disintegration is of great importance to practical engineering. This paper presents a micro-mechanical analysis on the mechanical behaviour of mudstone at different degrees of disintegration using the discrete element method (DEM). The laboratory triaxial tests carried out on mudstone samples that have been merged in water for different time periods are simulated. The dissolution of minerals and weakening of bonds between grains are considered by reducing the selected input parameters of parallel bonds at random locations. Different degrees of disintegration are obtained by multiplying the selected input parameters of parallel bonds with different reducing factors. The stress-strain curves obtained using the proposed approach are in good agreements with the experimental data. The progressive failure mechanism of mudstone at different degrees of disintegration is investigated considering the characteristics of particle motion, contact variation and bond breakage. Micro-scale analysis shows that with the increasing of confining pressure, the fraction of shear breakage of parallel bonds increases but the declining rate of coordination number post peak decreases. These underlie the fundamental mechanism of the change of failure mode of mudstone from brittleness to ductileness. Regardless of its spatial locations, the majority of broken bonds for the disintegrated specimens are those bonds with reduced input parameters. And the fraction of altered bonds within the broken bonds increases with the increasing degree of disintegration. The current research provides insightful understanding of the fundamental behaviour of mudstone in the presence of water.

Publisher

IOP Publishing

Subject

General Engineering

Reference15 articles.

1. Experimental study of the disintegration of Permian mudstone in north China;Sun;Railway Construction Technology,2016

2. Research on softening micro-mechanism of special soft rocks;Zhou;Chinese Journal of Rock Mechanics and Engineering,2005

3. Water-induced variations in mechanical properties of clay-bearing rocks;Erguler;International Journal of Rock Mechanics and Mining Sciences,2009

4. Influence of moisture contents on mechanical properties of sedimentary rock and its bursting potential;Meng;Chinese Journal of Rock Mechanics and Engineering,2009

5. Effect of inundation on shear strength characteristics of mudstone backfill;Nahazanan;Engineering Geology,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3