A Review of Fabrication Techniques and Optimization Strategies for Microbial Biosensors

Author:

Ahuekwe E.F.,Akinyele A.F.,Benson A.E.,Oniha M.I.,Oziegbe O.

Abstract

Abstract Challenges of stability and specificity associated with early generation sensors necessitate the fabrication and optimization of microbial biosensors. More so, the global biosensors market size currently valued at USD25.5 billion in 2021 is expected to grow at a compound annual growth rate (CAGR) of 7.5% to USD36.7 billion in 2026. Microbial biosensors are bioanalytical systems that integrate microorganisms with a physical transducer to generate signals, thus, aiding the identification of analytes. The biosensors are fabricated through a series of steps comprising microbe selection, immobilization onto a matrix, microfabrication, calibration, and validation. The transducers integrated microorganisms generate quantifiable signals, enabling real-time monitoring of a diversity of analytes within food samples. The optimization strategies are scrutinized, with a particular focus on the integration of sundry nanoparticles, such as magnetic, gold, and quantum-dot nanoparticles, which enhance sensor performance. Distinct advantages offered by microbial biosensors promise to revolutionize food quality assessment via cost-effectiveness, rapid sample testing, and the ability to provide access to real-time data. Literature have highlighted certain limitations including interference from complex matrices, instability of microorganisms, and microbial lifespan. In assessing their economic importance, a comparative analysis is presented against conventional food analytical methods like ELISA, PCR, and HPLC; thus, highlighting the unique strengths of microbial biosensors. The future perspectives focus on the potential of the technology in addressing the need for continuous monitoring challenges, and research for further improvements in the biocompatibility of fabrication processes and long-term reusability.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3