The Properties of OPEFB Cellulose Nanofibrils Produced by A Different Mode of Ultrafine Grinding

Author:

Amanda P,Nabila S,Qonita N,Ningrum R S,Ismadi ,Masruchin N

Abstract

Abstract Cellulose Nanofibrils (CNFs) was resulted from deconstruction of the hierarchical structure of cellulose. CNFs are commonly obtained by mechanical fibrillation, such as ultrafine grinding processes and its variation. Nevertheless, the influence of different treatments on the properties of the resulting CNF especially from variety of ultrafine grinding mode has not been reported. This study investigates the properties of cellulose nanofibrils (CNF) produced from bleached pulp oil palm empty fruit bunch (OPEFB) Kraft pulp through an ultrafine grinder with two different treatments in the fibrillation process. These two treatments were: 1) ultrafine grinder with increasing gaps distances; -30, -50, -70, and -90 µm with five cycles in every gap, 2) ultrafine grinder on constant gaps (-30µm) with increasing grinding cycles: 5, 10, 15, 30, and 40 cycles through the grinder. The influence of the treatment was evaluated through particle size distribution, crystallinity index, and morphological properties. The result showed that the increasing gaps treatment efficiently improved the size uniformity of CNFs, length 147-139.5 nm, and scanning electron microscope micrograph confirmed that the diameter of CNF was smaller with the increasing grinding gaps than increasing grinding cycles. However, the increasing cycle’s treatment produced CNF with a higher crystallinity index. The crystallinity index (CrI) of the CNF decreased from 71.27 to 62.25% with increasing gaps, whereas the CrI of the CNF from increasing cycles was 69.35%. This study provides a valuable guideline for determining the appropriate process to produce CNF especially by mechanical grinding using ultrafine grinder from OPEFB according to the desired result.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3