The Influence of Adiabatic Heat and Combined Blast Load and Fire Loading on the Response of Mild Steel Plates

Author:

Razak N S A,Nik Mazlan N N A A,Hassan Z,Alias A

Abstract

Abstract This paper study the influence of adiabatic heat and fire loading on the behaviour of unstiffened mild steel plates subjected to close-in blast loads using finite element (FE) analysis. A quarter-symmetry 3D FE model consists of the steel plate, clamps and bolts was developed using Abaqus/CAE. Classical plasticity model was used as the material model in the steel plate and bolts. The clamps were assumed as an elastic material. Temperature-material properties relationship according to Eurocode 3 and Masui model was assigned to the steel plate. Conwep function was used to simulate the blast loads. The influence of strain rates was considered in the steel plate using the Cowper-Symonds equation. The FE model of the unstiffened plates was verified and validated against experimental data from literature, where a good agreement was achieved. The results suggest the adiabatic heat in the steel plates does not significantly influence the behaviour of the steel plates in both temperature-material properties models. The study then investigated the effect of combined blast loads and fire loading on the response of steel plates. The fire loading was applied by increasing the temperature in the steel from 200 °C to 1000 °C. Excessive deformation and thinning of the plate at the central area of the plate was observed. The thinning at the central area is pronounce than the thinning of the plate at the boundary between the clamp and the steel plate. Hence, the FE analysis suggests that the failure might occur at the central area of the plate, which could suggest a tearing type of failure. This type of failure is common in plates subjected to close-in blast loads. Therefore, this study has shown that the effect of adiabatic heat is insignificant, and the combined blast-fire loading might cause a similar type of failure as in plates subjected to blast loads only.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3