On the relationship of power lines outages caused by thunderstorms with Forbush decreases of cosmic rays

Author:

Shadrina L P,Kozlov V I,Grigoriev Yu M

Abstract

Abstract It is known that power lines outages often occur during thunderstorms. Here are the results of comparing of power lines outages in Yakutia from 2012 to 2018 with the database of Forbush-Storm events. This database contains information on geomagnetic storms and Forbush-decreases of cosmic rays from 1996 to 2018. There are 3 classes of the events: if these two ground-based manifestations of solar wind disturbances occur simultaneously (Forbush with Storm, F+S) or separately (Forbush without Storm, F-S and Storm without Forbush, S-F). For 7 years in the summer time, 73 power lines outages associated with thunderstorms were recorded. It is shown that in 56 cases these outages occurred simultaneously with (F-S) class, 16 – with (F+S) class, and only in 1 case lightning outages were not associated with Forbush-Storm events (-F-S). In 19 cases of (S-F) class, not a single lightning outage was recorded. This means that lightning outages on power lines are mainly associated with decreases in the cosmic rays intensity, and during geomagnetic storms, power transmission disruptions occur when storms are simultaneous with Forbush-decreases of cosmic rays. Apparently, this indicates the significance of the effect of cosmic rays on atmospheric electricity, and it is more significant than the effect of geomagnetic storms.

Publisher

IOP Publishing

Subject

General Engineering

Reference14 articles.

1. Variations of geomagnetic and telluric fields in the North-Western regions of Russia under space weather disturbances: Connection with the geoelectric structure and induced currents in power lines;Sokolova;Geophysical Processes and Biosphere,2019

2. The Effects of Geomagnetic Disturbances on Electrical Systems at the Earth’s Surface;Boteler;Adv. Space Res.,1998

3. Solar-Earth physics and its applications;Kuznetsov;Successes of Physical Sciences (SPS),2012

4. The influence of magnetic storms on the accident rate of electric power, automation and communication systems;Avakyan;SPbGPU Scientific-Technical Bulletin. Science and Education,2012

5. Investigation of the relationship of the lightning activity of the Altai Mountains with the geomagnetic activity indices;Gvozdarev,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3