Phosphorus adsorption on the surface of pumice and natural sand adsorbents

Author:

de Rozari P,Therik A

Abstract

Abstract Climate change may cause serious implications on the fate of anthropogenic and natural chemicals in water bodies. This condition could lead health problems and environmental destruction. Phosphorus (P) from domestic wastewater released to the water body without proper treatment could lead to eutrophication. Therefore, it is crucial to remove phosphorus from domestic wastewater. Adsorption technology using locally adsorbent materials is a promising alternative method to remove P because of its low cost and effectiveness. In this study, a combination of pumice and sand was investigated to remove phosphorus from the solution. The aim of this study was to study the capacity of local sand and pumice from East Nusa Tenggara (ENTP) to adsorb phosphorus. These adsorbents were characterized using X-ray diffraction, FTIR and XRF followed by isotherm and kinetic adsorption experiments. The results showed that the adsorption of P in these local materials followed the Langmuir model and the P adsorption capacity was 0.07825 mol g−1. The adsorption kinetics followed the second order. Thus, natural pumice can be potentially used as an adsorbent for treating domestic wastewater.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3