Flash flood modeling using the artificial neural network (Case study: Welang Watershed, Pasuruan District, Indonesia

Author:

Suhardi ,Hidayah E,Halik G

Abstract

Abstract The Artificial Neural Network (ANN) has been widely used in flood modeling and has proven to be good accuracy. This research aims to flash flood modeling using ANN. The flash flood modeling was conducted at Welang Watershed, Pasuruan District, East Java, Indonesia. The input of flash flood using ANN consists of rainfall and runoff coefficient. The runoff coefficient was derived by the Normalized Difference Vegetation Index (NDVI) value from the Landsat 8 Operational Land Imager (OLI). The output ANN model was flash flood discharge. The ANN architecture model uses a backpropagation neural network. The period of training and testing model ANN using data from January to February 2017 period and November to December 2017 period, respectively. The Result of flash flood modeling with ANN showed the good of fitness pattern between output model and observation data.

Publisher

IOP Publishing

Subject

General Engineering

Reference27 articles.

1. Flash flood hazard mapping using satellite images and gis tools: a case study of najran city, kingdom of saudi arabia (ksa);Elkhrachy;Egyptian Journal of Remote Sensing and Space Science,2015

2. A review of methods and systems available for flashflood forecasting;Hapuarachchi,2008

3. Dampak Perubahan Tata Guna Lahan Terhadap Respon Hidrograf Banjir Di Daerah Aliran Sungai Sampean Baru;Halik,2010

4. Perubahan tutupan lahan akan berdampak pada berubahnya sifat-sifat hidrologi seperti koefisien aliran, debit dan karakteristik hidrograf aliran. indikator kerusakan hutan dapat dilihat dari karakteristik hidrograf. evaluasi respon das berupa hidrograf;Latuamury;Majalah Geografi Indonesia Fakultas Geografi UGM.,2012

5. Modeling the Effects of Land-Cover Change on Rainfall-Runoff Relationships in a Semiarid, Eastern Mediterranean Watershed;Ohana-Levi,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3