Assessment of Coastal Altimetry Data in the South China Sea using Multiple Frequency Approaches

Author:

Mohd Hairy Ansar Andi,Hassan Md Din Ami,Idris Khairulnizam M,Hanif Hamden Mohammad,Nizam Uti Mat,Liew Jeng U

Abstract

Abstract With a coastline length extending over 13,000 km, including the Malaysia region, the South China Sea presents a challenge to retrieve high quality data along the coastal area especially the sea level anomaly and significant wave height. Currently, coastal altimetry is still facing some issues especially when using the low frequency data such as data lacking near the coast, questionable data accuracy since the altimeter footprint contaminated with the land and less coverage of data from the installed ground truth data. This study aims to assess the coastal altimetry data of sea level and significant wave height in the South China Sea using low and high frequency approaches. This study involved deriving data from sea level anomaly (SLA) and significant wave height (SWH) through the use of Prototype for Expertise on AltiKa for Coastal, Hydrology and Ice (PEACHI) for high frequency and Radar Altimeter Database System (RADS) for low frequency of altimetry and ground truth station which is from tide gauge and Acoustic Wave and Current Profiler (AWAC). Comparison between altimetry and ground truth data has been made in order to validate the significant agreement between them. The validation of the data is to evaluate both types of frequencies with respect to the coastal distance. Consequently, the high frequency results for coastal results with a root mean square reliable ±0.14 metre level for the sea level anomaly (SLA) and ±0.18 metre level for significant wave height (SWH) are more reliable. PEACHI distance-to-coast data obtained a sufficient standard residual deviation ranging from 0 cm to 2.87 cm compared to RADS altimetry ranging from 0.08 cm to 14.20 cm. The findings of this study indicate that the coastal altimetry data benefit coastal development, coastal defence, monitoring and tourism by various related agencies.

Publisher

IOP Publishing

Subject

General Engineering

Reference20 articles.

1. Sea Level Change and Vertical Motion from Satellite Altimetry, Tide Gauges and GPS in the Indonesian Region;Fenoglio;Marine Geodesy,2012

2. Assessment of seasonal variability for wind speed and significant wave height using satellite altimeter over malaysian seas;Uti;Paper presented at the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives,2018

3. Derivation of sea level anomaly based on the best range and geophysical corrections for malaysian seas using radar altimeter database system (RADS);Din;Jurnal Teknologi,2014

4. Sea level trend over malaysian seas from multi-mission satellite altimetry and vertical land motion corrected tidal data;Din;Advances in Space Research,2019

5. Sea Level Anomaly Assessment of SARAL/AltiKa Mission Using High And Low Frequency Data;How;Jurnal Teknologi,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3