Anomaly-based fault detection in wind turbines using unsupervised learning: a comparative study.

Author:

Vásquez-Rodríguez Génesis,Maldonado-Correa Jorge

Abstract

Abstract Wind energy has experienced significant growth in recent years thanks to the technological development of wind turbines (WTs). However, one of the main challenges for the wind industry remains the early detection of WT failures. An effective strategy to address this challenge is implementing condition monitoring (CM) to detect changes in WT operation that could indicate the onset of a potential failure. This paper uses data from the SCADA (Supervisory Control and Data Acquisition) system of a wind farm located in Ecuador to test three unsupervised machine learning (ML) methods to detect anomalies in the data, allowing for predicting potential WT failures. Evaluation metrics showed that the Mahalanobis Distance (MD) algorithm performed better in anomaly detection over Isolation Forest (IF) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), achieving an accuracy of 0.94, 0.90 and 0.74 respectively; however, IF more effectively detected the points determined as anomalies.

Publisher

IOP Publishing

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3