Discovering formation of ice 0 by low-frequency measurement data

Author:

Orlov A O,Tsyrenzhapov S V

Abstract

Abstract In this work, low-frequency characteristics of wetted nanoporous silicate materials were measured, as well as the specimen’s own low-frequency electric fluctuations at the frequencies of 1…100 Hz. The measurements at low frequencies were conducted at different voltages of the probing signal. A capacity cell was used in making the measurements. In the experiments, at the temperatures below –25…–30 °C, non-linearity of the medium was discovered. The experiments on the study of the specimen’s own electric fluctuations at these temperatures revealed their essential increase. These temperatures are below the point of phase transition of supercooled water to recently discovered ferroelectric ice 0. Based on the measurements made, a conclusion was made regarding formation of this modification of ice in the nanosize pores of the wetted materials under study. Ice 0 is a ferroelectric; therefore, its formation from deeply supercooled water may have a significant impact on the electric parameters of wetted bodies at the temperatures below –23 °C. At the interface of such ice with another dielectric, a thin layer with practically metallic conductivity emerges. Such a layer influences not only the non-linear dependence of dielectric permittivity on the electric field but also increases attenuation of electromagnetic radiation in a medium.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3